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1. Introduction

According to the AdS/CFT correspondence, the large-N string of the super-Yang-Mills

(SYM) theory in four dimensions has AdS5 × S5 as the target space [1 – 3]. The sigma-

model on AdS5 × S5 [4] is a complicated interacting field theory whose direct solution is

currently beyond reach. A relatively simple kinematic truncation of the AdS sigma-model

was proposed recently by Maldacena and Swanson [5]. Technical simplifications brought

about by this trunctation potentially allow one to test various guesses and conjectures about

the AdS/CFT correspondence, and eventually can help in quantizing strings in AdS5 ×S5.

The purpose of this paper is to test the quantum mechanical consistency of this truncation.

The left and right movers on the world-sheet of the AdS string mix and cannot be

factored from each other. Maldacena and Swanson proposed to separate what is as close

to the left-moving sector as it could be, namely to consider modes whose right-moving

momentum p+ is much smaller than p−. Massive string states in the near-flat-space limit

of AdS5 ×S5 [2] are built precisely from these asymmetric modes [6]. As was shown in [5],

the action of the sigma-model can be consistently truncated and considerably simplified, if

p± scale as p± ∼ λ∓1/4, where λ is the (large) ’t Hooft coupling of SYM and 2π/
√

λ is the

(small) loop-counting parameter of the sigma-model. However, it is not at all obvious if such

truncation is quantum mechanically consistent. Keeping only high-energy modes in the

external legs does not guarantee that low-momentum modes do not appear as intermediate

states in quantum loops.

To test the quantum consistency of the truncation we will calculate the one-loop S-

matrix in the reduced model and compare it to the corresponding limit of the complete S-

matrix. The S-matrix plays an important role in the AdS/CFT correspondence [7] because

both planar SYM [8 – 10] and the string sigma-model [11, 12] are completely integrable,

and their common spectrum is in principle completely determined by feeding the two-body

S-matrix in the Bethe equations [13]. The tensor structure of the two-particle S-matrix is
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determined by symmetries [14].1 The left over freedom is given by an abelian phase factor

which has not been derived from first principles but may be already known exactly: the

phase of the S-matrix satisfies a linear functional equation as a consequence of the crossing

symmetry [17]; the tree-level phase can be extracted [6] from classical Bethe equations [12]

or from the scattering of giant magnons [18]; the one-loop phase was guessed in [19] and is

well tested by comparing one-loop corrections to various classical string configurations [20 –

24] to the Bethe-ansatz predictions [25 – 31]; an all-order solution of the crossing equation

was found in [32] and the non-perturbative phase factor valid for the whole range of λ was

proposed in [33]. We will see that the one-loop amplitude in the truncated sigma-model

perfectly agrees with the one-loop phase in [19]. This is not so much a check of the latter,

but rather a check of the quantum consistency of the near-flat space limit. The agreement

means that the low momentum modes which are projected out in the reduced theory do not

show up in the one-loop amplitudes or that their contribution cancels for external states

with large p−. In other words, the near-flat space limit and the one-loop computation

commute.

2. Reduced sigma-model

The action of the reduced model in the light-cone gauge is [5]:

1

4
L = ∂+Y ∂−Y − 1

4
Y 2 + ∂+Z∂−Z − 1

4
Z2 + i ψ+∂−ψ+ + i ψ−Πψ+

+i ψ−∂+ψ− +
(

Y 2 − Z2
)

[

(∂−Y )2 + (∂−Z)2
]

+ i
(

Y 2 − Z2
)

ψ−∂−ψ−

−iψ−
(

∂−Y i′Γ i′ + ∂−ZiΓ i
)(

Y i′Γ i′ − ZiΓ i
)

ψ−

− 1

12

(

ψ−Γ i′j′ψ− ψ−Γ i′j′ψ− − ψ−Γ ijψ− ψ−Γ ijψ−
)

. (2.1)

The four-component bosonic fields Y i′ and Zi describe string fluctuations in the S5 and

AdS5 directions, respectively. The fermionic fields ψ± are eight-dimensional Majorana-

Weyl spinors of the same chirality, Γ I are real SO(8) Dirac matrices and Π = Γ 1Γ 2Γ 3Γ 4.

∂± are the usual light-cone derivatives: ∂± = (∂0 − ∂1)/2. The Lagrangian (2.1) does

not depend on any parameters, dimensionful or dimensionless, but for making the power-

counting easier it is convenient to introduce such parameters by rescaling the world-sheet

coordinates and the fermions as σ± → γ±1/2mσ±, ψ± → γ∓1/4m−1/2ψ± (this is a combi-

nation of a dilatation and a boost). It is also convenient to rescale all the fields by a factor

of 1/
√

2 which brings the kinetic terms to the canonical form. In addition we integrate out

ψ+ which enters the action quadratically. After all these transformations and dropping the

1The scattering matrix of the string modes [15] differs from the gauge-theory S-matrix [14] by a

scattering-state dependent transformation that brings the S-matrix to the canonical form [16].
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Figure 1: The scattering amplitude ZY → ZY . Diagrams (b) and (c) contribute at tree level.

The one-loop amplitude contains s-, t-, and u-channel diagram: (d), (e) and (f). Any of the fields

Z, Y and ψ can propagate in the loop.

minus from ψ−, the action becomes

L =
1

2
(∂Y )2 − m2

2
Y 2 +

1

2
(∂Z)2 − m2

2
Z2 +

i

2
ψ

∂2 + m2

∂−
ψ

+γ
(

Y 2 − Z2
)

[

(∂−Y )2 + (∂−Z)2
]

+ iγ
(

Y 2 − Z2
)

ψ∂−ψ

−iγψ
(

∂−Y i′Γ i′ + ∂−ZiΓ i
) (

Y i′Γ i′ − ZiΓ i
)

ψ

− γ

12

(

ψΓ i′j′ψ ψΓ i′j′ψ − ψΓ ijψ ψΓ ijψ
)

. (2.2)

The truncated model (2.1) was obtained from the sigma-model on AdS5 × S5 by a boost

in the σ− direction with rapidity ∼ λ1/4 À 1 [5]. The rescaling with γ essentially undoes

the boost and by setting

γ =
π√
λ

, (2.3)

we make the kinemtical variables in the truncated model the same as in the original sigma-

model, assuming that p− À p+ in the latter. The numerical coefficient in (2.3) is most easily

fixed by comparing the tree-level scattering amplitudes with those in the sigma-model [15].

The mass m should be set to 1 at the end of the calculation.

We now turn to the calculation of the S-matrix. Since all its components are related

by symmetry, it suffices to calculate only one matrix element. We will compute the forward

ZY → ZY scattering amplitude, drawn in figure 1 (a). This particular amplitude is chosen

because its calculation involves the least amount of combinatorics, which becomes rather

cumbersome already at the one-loop level.

2.1 Tree-level amplitude

In two dimensions 2 → 2 scattering has no phase space, and particles can either preserve

or exchange their momenta, since the conservation condition of the two-momentum can be
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written as

δ(p + p′ − k − k′) =
p0p

′
0

p′0p1 − p0p′1

(

δ(p1 − k1)δ(p1 − k′
1) + δ(p1 − k′

1)δ(p
′
1 − k1)

)

. (2.4)

We consider the transition amplitude Z(p)Y (p′) → Z(p)Y (p′) which amounts in keeping

only the first delta-function in the right-hand side. The Jacobian in (2.4) and relativistic

normalization factors in the wave functions (1/
√

2p0 for each external line) combine into

an extra factor
1

4

1

p′0p1 − p0p
′
1

=
p−p′−

2m2
(

p′2− − p2
−
) (2.5)

that should be taken into account when extracting the S-matrix elements from Feynman

diagrams. Here p± = (p0 ± p1)/2.

At tree level we need to evaluate just two diagrams, (b) and (c) in figure 1. A simple

calculation gives:2

S = 1 − 2iγp−p′− + O(γ2) . (2.6)

Upon identification (2.3), this agrees with the tree-level scattering amplitude in the sigma-

model [15] in the limit

p− → ∞ , p+p− = fixed . (2.7)

2.2 One-loop amplitude

The one-loop diagrams are shown on figure 1 (d), (e), (f). There are also several ways

of distributing the derivatives in the vertices among various lines. The superficial degree

of divergence of these diagrams is zero, which potentially leaves room for logarithmic UV

divergences. Nevertheless, all the diagrams turn out to be finite. There are two reasons for

that. First, fermi-bose cancelations reduce the degree of divergence by one and, second, the

integrands behave as k2
−/k4 at large momenta, which gives zero upon angular integration

even before the cancelations are taken into account.

Using Feynman rules that follow from the Lagrangian (2.2), we find for the one-loop

amplitude (which has to be divided by the Jacobian (2.5) to get the S-matrix element):

A1−loop = 16γ2
(

p2
− + p′2−

)







∫

d2k

(2π)2

(

p− + p′−
)

k−

(k2 − m2)
[

(p + p′ − k)2 − m2
]

+

∫

d2k

(2π)2

(

p− − p′−
)

k−

(k2 − m2)
[

(p − p′ − k)2 − m2
]







+64γ2p2
−p′2−

∫

d2k

(2π)2
1

(k2 − m2)2
. (2.8)

The first two integrals correspond to the two-particle exchange in the s- and u-channels.

The last term is the t-channel contribution. The s-channel amplitude contains an absorptive

part from the on-shell intermediate states. This can be related to the tree amplitudes by

2We put m = 1 here.
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unitarity (see below). The u-channel diagram is an analytic continuation of the s-channel

contribution to Euclidean momenta. This happens to lead to additional cancelations, and

the final result takes a relatively simple form:3

S1−loop =
8iγ2p3

−p′3−
π

(

p′2− − p2
−
)

(

1 − p′2− + p2
−

p′2− − p2
−

ln
p′−
p−

)

− 2γ2p2
−p′2−

(

p′2− + p2
−
)

(

p′− − p−
)2 . (2.9)

3. Near-flat space limit of canonical S-matrix

In this section we compare our one-loop results to the p− → ∞ limit of the S-matrix of

the full string sigma-model. The exact S-matrix is expressed in terms of the following

kinemtical variables4

x±(p) =
1 +

√
1 + P 2

P
e
± iπp√

λ , P =

√
λ

π
sin

πp√
λ

. (3.1)

The amplitude for ZY → ZY scattering5 is given by [14, 16]

Sstring =
1 − 1

x′
+

x−

1 − 1
x′
−x+

x′
− − x+

x′
+ − x−

(

x′
− − x−

x′
− − x+

)2

e
2iπp√

λ
+iθ(p,p′)

, (3.2)

where x± ≡ x±(p1), x′
± ≡ x±(p′1). The first term in the exponent indicates that we use

the canonical S-matrix in the string basis [16] and the second term is the dressing phase

discussed in the introduction. It is a gauge dependent quantity, however, in the near-flat-

space limit all generalized light-cone gauges become identical. For simplicity we choose

therefore the uniform gauge, where the dressing phase is of the form [6, 34]:

θ(p, p′) =
1

π

∑

r,s=±
rs χ(xr, x

′
s) , (3.3)

with (we will only need this second derivative)

∂2χ(x, y)

∂x ∂y
=

√
λ

2

∞
∑

r=2

∞
∑

n=0

cr,n

xryr+2n+1
− (x ↔ y) , (3.4)

and, to the one-loop accuracy [19],

cr,n = δn 0 −
8√
λ

(r − 1)(r + 2n)

(2r + 2n − 1)(2n + 1)
+ . . . . (3.5)

We will now demonstrate that within the near-flat-space kinematics, the exact ampli-

tude (3.2) agrees with (2.9) upon expansion in π/
√

λ and identification (2.3). Let us first

3Again we set m = 1.
4Our normalization of the momenta is different by a factor of 2π/

√
λ from the one commonly used in

the literature. This normalization is natural from the point of view of the perturbative sigma-model [15].
5The relevant component of the S-matrix is denoted by L in [14, 15] and by a5 in [16].
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expand the phase θ(p, p′). Taking into account that the difference between P in (3.1) and

p1 is unimportant at the one-loop level, we find from (3.3), (3.1):

θ(p, p′) = −4π

λ
(1 + p0)

(

1 + p′0
) ∂2χ

∂x∂y

∣

∣

∣

∣

x=
1+p0

p1
, y=

1+p′
0

p′
1

. (3.6)

The summation in (3.4) yields

∂2χ

∂x∂y
=

√
λ

2

x − y

x2y2 (xy − 1)

+
2

(xy − 1)(x − y)
+

[

1

(xy − 1)2
+

1

(x − y)2

]

ln
(x + 1)(y − 1)

(x − 1)(y + 1)
+ . . . , (3.7)

and we get

θ(p, p′) =
π√
λ

[(p′0 − 1)p1 − (p0 − 1)p′1]
2

p′0p1 − p0p′1
+

4π

λ

(

p1p
′
1

p′0p1 − p0p′1

)2 [

p′0p1 − p0p
′
1

−p · p′ ln (1 + p0 + p1)(1 + p′0 − p′1)

(1 + p0 − p1)(1 + p′0 + p′1)

]

+ . . . . (3.8)

The real part of the amplitude (the imaginary part of the S-matrix element) comes

entirely from the dressing phase, and in the limit (2.7) becomes

Im Sstring
1−loop =

8π

λ

p3
−p′3−

p′2− − p2
−

(

1 − p′2− + p2
−

p′2− − p2
−

ln
p′−
p−

)

, (3.9)

in complete agreement with (2.9).

The rest of (3.2), including the interference of the tree-level phases, determines the

absorbtive part of the amplitude:

ReSstring
1−loop = −π2

2λ

[

(p′0p1 − p0p
′
1)

2 + 2(p2
1 − p1p

′
1 − p′1

2) +
(p1 + p′1)

2(p2
1 + p′1

2)

(p′0p1 − p0p′1)
2

]

. (3.10)

In the limit (2.7) this becomes

Re Sstring
1−loop = −2π2

λ

p2
−p′2−

(

p′2− + p2
−
)

(

p′− − p−
)2 , (3.11)

also in agreement with (2.9).

The absorbtive part of the one-loop amplitude can be reconstructed from tree-level

amplitudes by unitarity. Writing6

�
= � +

2πi√
λ

T,

T |Zαα̇Y ′
aȧ〉 = 2L(p, p′)|Zαα̇Y ′

aȧ〉 − H(p, p′)|Ψaα̇Υ ′
αȧ〉 + H(p, p′)|ΥαȧΨ

′
aα̇〉 (3.12)

6Here we switch from the SO(4)2 notations in (2.2) to the SU(2)4 notations: i′ → (aȧ), i → (αα̇),

see [15] for more details.
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and taking the tree-level amplitudes from [15]7

L(p, p′) =
1

4

[

(1 − 2a)
(

p′0p1 − p0p
′
1

)

+
p2
1 − p′1

2

p′0p1 − p0p′1

]

, (3.13)

H(p, p′) =
1

2

p1p
′
1

p′0p1 − p0p′1

(p0 + 1) (p′0 + 1) − p1p
′
1

√

(p0 + 1) (p′0 + 1)
, (3.14)

we can use the optical theorem

ImT =
π√
λ

T †T (3.15)

to find the imaginary part of the one-loop contribution to Sstring. In the limit of large p−
we find

∣

∣2L(p, p′)
∣

∣

2
+ 2

∣

∣H(p, p′)
∣

∣

2
=

p2
−p′2−

(

p′−
2 + p2

−
)

(

p′− − p−
)2 , (3.16)

which, multiplied by π√
λ
· 2π√

λ
, is exactly what we have obtained before.

4. Conclusions and outlook

The string sigma-model on AdS5 × S5 simplifies considerably in the near-flat space limit

thus making loop computations feasible. This opens up a possibility to check various

conjectures about the exact S-matrix or the spectrum of the AdS string. It is not obvious

that the reduced theory agrees with the full sigma-model at the quantum level, because

low-momentum states could survive in loop diagrams even if the external legs all have large

light-cone momenta. For instance, the momentum flowing through the t-channel loop in

diagram figure 1 (e) is zero. However, the agreement of the one-loop scattering amplitudes

strongly suggests that the low-momentum states indeed decouple.

Another indication of the self-consistency of the near-flat space reduction is the finite-

ness of the one-loop amplitudes. The divergences cancel due to the asymmetric treatment

of left- and right-moving modes. We believe that the same mechanism renders the model

finite to all loop orders.
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